

Snow Cover Mapping for Yield Forecasts and Photovoltaic System Monitoring

Georg Wirth
University of Applied Science Munich
georg.wirth@hm.edu

Outline

- Influence of Snow on Monitoring PV Systems
 - Monitoring of PV Systems
 - Effects of a Snow Cover
 - Available Snow Cover Datasets
 - Validation of the Datasets
- Snow Cover Mapping for Yield Prognosis
 - General Information on Yield Prognosis
 - Satellite Record Used for the Snow Cover Maps
 - Snow Cover Maps for Europe and the US

Monitoring PV-Systems

 Monitoring is important due to financial reasons and will become necessary for grid stability

 The actual yield of a PV-System can be calculated for a given ____

solar radiation

 Irradiance information is often derived from satellite data

 Satellite data is advantageous because of its spatial information

Effects of Snow Cover

Provider	Satellit	Sensor	Resolution	Coverage	Data Type		
Automated snow mapping system (NOAA – STAR)	MSG	SEVIRI	4 km	Europe	Binär		
Carl von Ossietzky Universität Oldenburg	MSG	SEVIRI	On demand	Europe	CSV		
Carlo Gavazzi Space (CGS)	Terra	MODIS	250 m	European Alps	Binär		
Deutsches Zentrum für Luft u. Raumfahrt – DLR	MSG	SEVIRI	4 km @ Nadir	Europe, Africa, South America	HDF		
IMS NSIDC	Aqua, Terra, MSG, POES	MODIS, SEVIRI, AVHRR, SSM/I, AMSU	4 km	Northern Hemisphere	GeoTIF ASCII		
LSA SAF (EUMETSAT)	MSG	SEVIRI	4 km @ Nadir	Europe, Africa, South America	HDF 5		
MODIS (MOD10A1)	Terra	MODIS	500 m	Worldwide	HDF EOS		
Snow Cover Mapping for Yield Forecasts and Photovoltaic System Monitoring Georg Wirth, georg.wirth@hm.edu Dezember 10 5							

Classification Accuracy

- LSA SAF and DLR show the best overall accuracy
- Both show the benefit of the high temporal resolution of Meteosat
- Global products show good values in Germany but have a low performance in difficult areas like Switzerland.

Dezember 10

Snow Cover Maps

Yield Prognosis

- For a yield prognosis it is common to use long time series of global irradiation data
- Data based on satellite and / or ground measurements
- A minimum of 5 years is recommended for significant results
- Hardly information on snow cover available

Data Used for the Snow Cover Maps

- NOAA / NESDIS
- Interactive Multisensor Snow and Ice Mapping System (IMS)
 - Snow Cover Mapping since 1966
 - Daily data on a 24 km x 24 km resolution since 1997
 - Daily data on a 4 km x 4 km resolution since 2004

Yearly Snow Cover Maps

Between 20 and 60 snow covered days in areas used for PV in Germany Considerably more snow in the north 55°N of the US 50° N 50° N 45° N 45° N 40° N 40° N 35° N 35° N 10° W 10° E 20° F 30° E 30° N Bavaria: ~ 4 GW of PV installed 3,5 % of the yearly consumption 25° N 120° W 130° W 110° W 100° W 90° W 80° W 70° W 0 20 40 60 80 100 120 160 140

Monthly Snow Cover in Europe

- Snow cover from November till March
- Little losses in November because there are only few snow covered days
- Small losses in December and January due to low zenith angle
- Most losses appear in March since the is considerable radiation and snow cover

Backup

Validation of the Datasets

Schweiz									
Name	Länge		Breite						
Aigle	6°	55'	0	46°	20'	Ν			
Altdorf	8°	38'	Ο	46°	52'	Ν			
Basel-Binningen	7°	35'	Ο	47°	32'	Ν			
Bern-Liebefeld	7°	25'	Ο	46°	56'	Ν			
Buchs-Suhr	8°	4'	Ο	47°	23'	Ν			
Chur-Ems	9°	32'	Ο	46°	52'	Ν			
Fahy	6°	56'	Ο	47°	25'	Ν			
Genève-Cointrin	6°	7'	Ο	46°	15'	Ν			
Zürich	8°	34'	Ο	47°	23'	Ν			
Lugano	8°	58'	Ο	46°	0'	Ν			
Luzem	8°	18'	Ο	47°	2'	Ν			
Magadino	8°	53'	Ο	47°	00	Ν			
Payerne	6°	57'	Ο	46°	49'	Ν			
Sion	7°	20'	0	46°	13'	Ν			
St. Gallen	9°	24'	0	47°	26'	Ν			

Deutschland						
Name	Länge	Breite				
Weissenburg/Bay	10° 58' O	49° 1'N				
Nümberg-Kra.	11° 3'O	49° 30'N				
Straubing	12° 34' O	48° 50'N				
Augsburg-Mühlheim	10° 57' O	48° 26' N				
Landsberg	10° 54' O	48° 4'N				
Ingolstadt	11° 32' O	48° 43'N				
München-Stadt	11° 33' O	48° 10'N				
Fürstenzell	13° 21' O	48° 33' N				
Konstanz	9° 11'O	47° 41'N				
Obersdorf	10° 17' O	47° 24'N				
Altenstadt	10° 52' O	47° 50'N				
Hohenpeissenberg	11° 1'O	47° 48' N				
Garmisch-Partenkirchen	11° 4'O	47° 29' N				
Wendelstein	12° 1'O	47° 42' N				

Total Error

Germany Switzerland total

- False Alarm Rate (Snow not identified) upward
- Error due to underestimation (to much snow) downward
- The orientation around the zero line shows the handling of identified snow
- The error should be small and symmetrical
- LSA SAF has the most symmetrical pattern

Snow Load Maps

- Hardly information on snow cover duration available
- Snow load maps are often used for a rough estimation of losses
- The maps are not applicable as they show the maximum load and not the duration

Validation in with Data of Germany's National Meteorological Service (DWD)

Monthly Snow Cover in Europe

Yearly Snow Cover in Asia

Yearly Snow Cover in Europe

Yearly Snow Cover in the US

